头像
 
  • 个人简介
  • 研究方向
  • 科研(教学)奖励
  • 论文发表
  • 专著出版
  • 科研项目
  • 社会兼职
  • 荣誉称号
  • 专利发明
 
  • 王正礼,太阳成集团tyc33455cc准聘副教授(特聘研究员)、博士生导师。研究领域包括复杂交通系统建模与优化、交通数据挖掘分析、交通安全、运筹优化等。主持国家自然科学基金青年项目1项,参与国家自然科学基金项目多项。研究成果发表在Transportation Research Part A/B/C/E、Accident Analysis & Prevention等国际知名期刊上。入选江苏省科协青年科技人才托举工程、中国公路学会青年人才托举工程,获得多项优秀论文奖励、以及清华大学优秀博士毕业生、北京市优秀毕业生、北京师范大学优秀毕业生等荣誉称号。  


    教育背景

    • 2015/09 - 2020/06   清华大学管理科学与工程专业,博士

    • 2019/03 - 2019/09   美国威斯康星大学麦迪逊分校土木与环境工程系,访问博士生

    • 2011/09 - 2015/06   北京师范大学管理科学专业(现为系统科学学院),学士


    工作经历

    • 2023/07 - 至今       太阳成集团tyc33455cc,副教授(准聘长聘序列)、特聘研究员

    • 2023/07 - 2023/10     香港科技大学土木与环境工程系,访问学者

    • 2022/07 - 2023/06      太阳成集团tyc33455cc,副研究员

    • 2020/09 - 2022/06     北京交通大学交通运输学院,讲师


    招生(请发送简历至zhlwang@nju.edu.cn)

    • 研究生:欢迎具有运筹优化、数学与应用数学、计算机科学、工业工程、管理科学与工程、大数据分析与决策、物流工程、计量统计、交通规划与管理、交通安全及其他相近专业背景的学生交流合作。

    • 本科生:包括本科毕业设计、数学建模竞赛、国创、省创、挑战杯、交通领域专业竞赛等科研训练项目。


  • 1. 复杂交通系统建模与优化

    2. 交通数据挖掘分析

    3. 交通安全

    4. 运筹优化

  • 1. 第6届多模式交通运输国际研讨会(ISMTBest Paper Award(2024)

    2. 第15届计算交通科学国际研讨会(CTS) Best Paper Award(2024)

    3. 江苏省双创博士(2023)

    4. 我校“郑钢基金—学业导师优秀示范奖”(2023)

    5. 江苏省科协青年科技人才托举工程(2023)

    6. 中国公路学会青年人才托举工程(2022)

    7. 中国公路学会优秀博士学位论文(2021)

    8. 第12届计算交通科学国际研讨会(CTS) Best Doctoral Dissertation(2021)

    9. 北京运筹学会青年优秀论文(2020)

    10. 清华大学优秀博士学位论文(2020)

    11. Sino-Japan Friendship Outstanding Paper(2018)


  • 期刊论文(SCI/SSCI, * 通讯作者)

    [17] Liu,S., Zhang, Y., Wang, Z.*, Liu, X., and Yang, H. (2025) Personalizedorigin-destination travel time estimation with active adversarial inversereinforcement learning and Transformer, Transportation Research Part E, 193, 103839.

    [16] Wang, Z., Zheng, Z., Chen X., Ma W., and Yang, H. (2024) Modeling the evolution of incident impact in urban road networks by leveraging the spatiotemporal propagation of shockwaves. Transportation Research Part C, 164, 104668.

    [15] Yang, Z., Shang, W., Miao, L., Gupta, S., and  Wang, Z. (2024). Pricing decisions of online and offline dual-channel supply chains considering data resource mining. Omega, 126, 103050.

    [14] Liu, S., Wang, Z.*, Zhang, Y., and Yang, H. (2024) Anomalous ride-hailing driver detection with deep transfer inverse reinforcement learning. Transportation Research Part C, 159, 104466.

    [13] Zheng, Z., Wang, Z.*, Hu, Z., Wan Z., and Ma W.* (2024)  Recovering traffic data from the corrupted noise: A doubly physics-regularized denoising diffusion model. Transportation Research Part C, 160, 104513.

    [12] Zheng, Z., Wang, Z.*, Liu S., and Ma W. (2024)  Exploring the spatial effects on the level of congestion caused by traffic accidents in urban road networks: A case study of Beijing. Travel Behaviour and Society, 35,100728.

    [11] Liu, S., Zhang, Y., Wang, Z.*, and S., Gu (2023) AdaBoost-Bagging deep inverse reinforcement learning for autonomous taxi cruising route and speed planning. Transportation Research Part E, 177, 103232.

    [10] Zheng, Z., Wang, Z.*, Chen X., Ma W., and  Ran, B. (2023). Spatiotemporal clustering for the impact region caused by a traffic incident: an improved fuzzy C-means approach with guaranteed consistency. Transportmetrica A:Transport Science, 1-30.

    [9] Liu, S., Wang, Z., and Jiang, H. (2022).  Signal timing optimisation with the contraflow left-turn lane design using the cell transmission model. Transportmetrica A:Transport Science, 18(3), 1254-1277.

    [8] Zheng, Z., Qi, X., Wang, Z.* and  Ran, B. (2021)  Incorporating multiple congestion levels into spatiotemporal analysis for the impact of a traffic incident. Accident Analysis & Prevention, 159, 106255.

    [7] Wang, Z., Liu, K., Zhu, L., and Jiang, H. (2021). Detecting the occurrence times and locations of multiple traffic crashes simultaneously with probe vehicle data. Transportation Research Part C, 126, 103014.

    [6] Wang, Z., and Jiang, H. (2020).  Identifying secondary crashes on freeways by leveraging the spatiotemporal evolution of shockwaves in the speed contour plot. Journal of Transportation Engineering, Part A, 146(2), 04019072.  

    [5] Wang, Z., Zhu, L., Ran, B., and Jiang, H. (2020). Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves. Transportation Research Part B, 141, 59-71.

    [4] Zheng, Z., Wang, Z.,  Zhu, L.,  and Jiang, H. (2020). Determinants of the congestion caused by a traffic accident in urban road networks. Accident Analysis & Prevention, 136, 105327.

    [3] Chen, Z., Wang, Z., and Jiang, H. (2019).  Analyzing the heterogeneous impacts of high-speed rail entry on air travel in China: A hierarchical panel regression approach. Transportation Research Part A, 127, 86-98.

    [2] Wang, Z., and Jiang, H. (2019).Simultaneous correction of the time and location bias associated with a reported crash by exploiting the spatiotemporal evolution of travel speed. Transportation Research Part B,123, 199-223.

    [1] Wang, Z., Qi, X., and Jiang, H.(2018). Estimating the spatiotemporal impact of traffic incidents: An integer programming approach consistent with the propagation of shockwaves. Transportation Research Part B,111, 356-369.  















  • 专著与章节

    [1]王正礼,《基于交通波时空传播规律的道路拥堵建模与分析》,清华大学出版社,2023年,ISBN 978-7-302-62045-7

    [2]Wang, Z., & Zheng, Z. (2024). Spatiotemporal Analysis for the Impact of Traffic Incidents: Optimization Models Consistent with the Propagation of Shockwaves. In Disruptive Technologies and Optimization Towards Industry 4.0 Logistics (pp. 267-289). Cham: Springer International Publishing.

  • 1. 突发交通事件下道路拥堵的时空传播及管控策略研究,国家自然科学基金青年科学基金项目,2022-2024,负责人

    2. 面向复杂管理决策的数学规划理论与方法,国家自然科学基金重大项目,2024-2028,参与

    3. 城市出行空间分布整体特征量化与建模,国家自然科学基金面上项目,2023-2026,参与

    4. 偶发性交通拥堵的时空影响范围研究,中央高校基本科研业务费,2021–2023,负责人

    5. 基于时空大数据的城市交通拥堵研究,CCF-腾讯犀牛鸟基金项目,2022-2023,负责人

  • 1. 清华大学优秀博士毕业生(2020)

    2. 北京市优秀毕业生(2020)

    3. Honored Graduate Student (2020, MHI-Tsinghua University)

    4. 北京师范大学优秀毕业生(2015)

  • 申请发明专利10余项,其中已授权5项。


Baidu
sogou